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Abstract  The bifurcation analysis of a bilayvered sheet between rigid surfaces under biaxial loading
(Alcaraz ¢r al.. 1997) is continued here by considering the stability analysis of the emerging
undulations near the interface in the spacially periodic mode. Assuming an initial perturbation
along the interface. conditions preventing the growth of this perturbation are studied. With this
alm. a stability parameter is introduced. The influence on this parameter of the geometric and
material variables is discussed in detail. It 1s also shown that stability strongly depends on the
constuitutive model assumed in the computations. Copyright ¢ 1996 Elsevier Science Ltd.

1. INTRODUCTION

In a previous paper (Alcaraz er al.. 1997). a critical bifurcation strain was determined for
the onset of interface instabilities in a bimetallic sheet between rigid surfaces subjected to
biaxial plastic loading. Diffuse mode instabilities, leading to an undulating behaviour of
the interface. were the main type of instabilities in the composite, in competition with the
localized shear band formation.

Focussing on that periodic spatial mode. it should be guaranteed that the growth of
the undulations remains below a critical level. Exceeding this level could result in refusable
bimetallic products. because of an unacceptable thickness in onc of the materials. For
example. in the bimetallic extrusion. products with an extremely non-uniform thickness are
sometimes obtained.

Several attempts were previously made in the analysis of instabilities. Dudzinski and
Molinari (1991) carried out a perturbation analysis applied to a thermoviscoplastic material
in biaxial loading. The growth of the instability was characterized by means of an effective
instability. This concept was introduced to consider the rate of growth of the fastest
mode. Apart from this study. more recently Triantafyllidis and Lehner (1993) analysed the
interfacial instabilities of density-stratified two-layer systems under initial stress. The sta-
bility of perturbations was determined from the appropriate linearized equations of motion.
The critical stress at which an initial stable stratitication is destabilized was shown to depend
on the wavelength of a perturbation.

In this paper. as a continuation of the previous one. a dynamic analysis of stability is
applied to a bimaterial layer. placed between rigid surfaces and subjected to biaxial loading.
The problem is tackled as a bifurcation problem. by considering the dynamic term in the
equilibrium equations. An instability parameter defined in the analysis contemplates the
growth of the initial interface undulations. The effects of the different geometric and
material variables on this parameter are presented, as well as the influence of the constitutive
model used in the calculations.
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Fig. 1. Geometry of the problem.

2. FORMULATION OF THE PROBLEM

A plane bilayer with finite thickness and infinite length is subjected to biaxial loading
in plane strain. Figure | shows the geometry of the problem : material A is placed between
the planes x, = @ and x, = b, material B between x, = b and x, = ¢, and the bilayer 1s
limited by two rigid surfaces at x, = ¢ and x, = ¢.

Consider then the stability of the initially plane interface, subjected at a time instant
t=0 to a perturbation of small amplitude (¢) and arbitrary wavelength, around the
equilibrium state.

The linearized equations of motion. in the absence of body forces. lead to the
expression :

H,, = pu; (D

where #,, represents the nominal stress tensor, ( ), meaning the partial differentiation with
respect to ,: i, is the acceleration vector. u, being the displacement vector, and p is the
density.

We can write all the quantities in the perturbed system as a sum of their corresponding
fundamental (unperturbed) values, plus a term which depends on the amplitude of the
initial disturbance. ¢. In particular:

n, = n.+ei, +07)

u, = u’ +eid,+0(e”) )

|

where nj,. u; are the fundamental values. and &7, &g, are the linear terms of the perturbed
magnitudes.
By inserting (2) in (1). the first order approximation yields:

A, = /)'LY./‘ 3)

On the other hand, the continuity conditions at the bimaterial interface can be written
in terms of the perturbed values:
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N> =04y =0 (4)

where the sign ¢ > indicates the jump in the enclosed magnitude across the interface. and
N, are the components of the outward normal. The boundary conditions imply that the
velocity component ¢, vanishes at xv. = ¢ and v. = ¢.

Assuming that the hydrostatic pressure does not affect the relation between the devi-
ators of stress rate and strain rate. the constitutive equation for incrementally-linear solids
1s expressed in the following form (Biot, 1965):

G = G2 = 20% (e —&ss)
G =2pe,

Gy =Gy, (5)

where 6, is the Jaumann denvative (referred to the rotating axes) of the true stress. ¢, is
the Eulerian strain rate. ¢, = (i, ,+4,,) 2. &, being the velocity. g, u* are two incremental
shear moduli. The linearization applies similarly to (5) vielding:

6> = 61 :;1(11_+1-73,) (6)

As the coefficients of the linearized equations do not depend on time, we can find
solutions in the form:

AL (X X X 7)) = @7 (V)L XA X)), (7)
By inserting (7). (3) turns into
Ay +pa =0 (8)
and the continuity conditions at the intertace (4) can be written as
NS =0, {ay=0. (9
Note that & is the linear eigenvalue of (&). For a constitutive law
A, =L, .0, (10)

where L, 1s a tensor of incremental moduli satisfying the symmetry condition L, ,; = Ly,
all the eigenvalues are proved to be real (Triantafyllidis and Lehner, 1993). When the
minimum of these eigenvalues. &, satisfies &, > 0. solution (7) will remain bounded with
time and the interface will be stable. It should be noted that no dissipation mechanism is
considered here. This would produce a decaying amplitude solution. For &, < 0. (7)
provides unbounded solutions. In that case. the system 1s said to be unstable. Finally, if
g5, = 0 for a certain perturbation. the problem reduces to a bifurcation case (analysed in
Alcaraz et al.. 1997).

At the moment of the analysis, the stress components under the assumed biaxial
loading are 0,, = 7, and .. = .. Both components are supposed uniform in each material
and ¢, can be different, in general. in 4 and B.

It is convenient to express (5) in terms of the nominal stress rates 7. which are related
to Jaumann derivatives 6, and true stresses ¢, by
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Using the constitutive eqns (5) and the incompressibility condition determined by
ty, +i-> = 0. the linearization of (11) yvields:

N Ca, cay
My =iy = | 2 "1('7|+(7:) (T: “(«,'\f
L - Xy X
N [ 1 cin [ 1 ¢ty
A=+ 40, —a) |x7 + | =50, +0) |
2 cy, 2 €X5
) i | it | (i,
= p—5la,+o.) | "+ |pu— oy —02) [z (12)
B = [QR L _ CX>

If we now introduce a flow function (v, x-) such that

_ N _ W
g.= .. if.=— _

XA (X,

(13)

and use (13) and (12) in (8) and (9). the following derivative equation can be derived:

(*4 (54 j (ul/ . (‘\:w ('12
(R+5) l/j +2(1—=R) - W CHR=S) g -l—e'(ﬂ K +:’"l'/j =0 (14)
(X CXTONE A CXTOX;
where. to be concise. the following notation has been used :
T T
= — . = - . = 15
Q¢ 4u* ‘ 2u* (13
and the corresponding continuity conditions at the interface are expressed by :
i F \\ // ~ \
(= (=0
\CX \CXs
(16)

where the condition {/i,,> = 0 is replaced by (/.. ,> = 0. On the other hand. the boundary
conditions are also easily expressed in terms of the flow function .

Equation (14) 1s said to be elliptic, hyperbolic or parabolic according to whether there
are zero. four or two real roots. respectively. for its characteristic equation. As noted in
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Alcaraz et al. (1997). real roots provide the characteristic planes of (14), allowing the
possibility of strain discontinuity in the form of shear bands. and imaginary roots imply
the existence of sinusoidal solutions around the interface. Here we are concerned with this
last type of instability, the only mode encountered in the elliptic regime. The analysis that
follows is centred on this regime, because it provides the most general solutions (complex
conjugates) and. for this reason. could be considered to include the remaining regimes.

3. EIGENMODES. DEDUCTION OF THE GOVERNING EQUATION

We are now interested in finding the minimum eigenvalue - corresponding to the first
eigenmode (see (7) and (8)). As commented before, there will be stable or unstable con-
ditions according to whether & > 0 or &° < 0. respectively. It will be shown later that the
magnitude & also indicates the amount of instability in the process.

To determine the eigenmodes of the problem. let us seek for solutions of the flow
function. . in the form:

2nx

W= flx.)sin \ (17
/.

By inserting (17) into (14). the following differential equation for the function f is
obtained :

(R=S) " +[-2(1l =Ry +e 1"+ [{R+S)* —e"w’] f=0 (18)

where m = 2r 2.

As we are considering the elliptic regime. the roots of the characteristic equation of
(18) are complex. and thus the resultant f functions that satisfv the boundary conditions
rs(Ns = a) = r-(x- = ¢) = 0 can be written as:

fo= A¢ sy, —a),

fo=Aic. sinofiic—x.), (19)

I

where # denotes the real part of the enclosed quantity. and ¢; and ¢, are complex constants,
and x and f. respectively. satisty:

(R, =S+ 200 —R)—h,Jr +[R,+S,—h, =0

(Ry— S+ 201 — Ry) —hylfim +[Ruy+Sp—bg]l =0 20
where
2 Fh—a) 2 1 —h)”
¢, = 'E(h—a). h, = Paz_ i) . gy = lz((‘_h). by :Ugi()( - )
- 2%y ’ 2utqy
Therefore.

R,—5,

and an analogous expression for fi-.
The interface conditions (16) turn into:
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C 2 .27
.%’{('1 'sm/.oc(ha)} = .%’{cg 'sm7 ﬁ(('—h)}
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2n 2n
//9{('1 T2 COS . 1(b—u)} = %{—(': 'ﬂ'cos_ﬂ(cAh)}
/ /
. 2n
-%’{fl R, =Sy — (R, +8,—2+b ]2 cos A x(hva)}

N
= C[.%’{~('3 “[(Rp—Sp)f” —(RB+S/B—2+bB)]ﬁ'Cos;[J(C—b)ﬂ

o)

{ , .27 , . 2n
(R,;—S,q)-%im ©3”*sin —;a(h—a) —(R,—S')#<{c, ~51n~/; a(b—a)

|

. . . . 2m 1 ; . 2n
= (Rg—Sp)#c B sin . fle—b)r—(Ry—Sy)A c-3'51n7,b’(('—b) (22)
/ d
where

. , 0,+0;
C=pEpy ST= A

(23)

To facilitate the elimination of ¢, and ¢» in (22). several relations from (21) can be
used :

(R, =S (R, +8,=24bh,) =w,+i0,

(R,—S ) —2 (R, =S,y =w,—1, (24)
where
w,=1-8,-5,2
0,=y2R,—1=8S7—b34+b,(1-R)—b(R;—S,) (25)
and. by setting x = p ,+1r,
P = A7) = }541;41:t§[):4*2
v (Ry=S)(R,+S,=b) _ [Ri+S.=b

pitr= 2t = =X, (20

R,—S, v RS,

and similarly for § = py+1r,.
After lengthy manipulations, (22) provides the following resultant equation :

5 , ;
(R4‘S|){pl [X.4(1*S4*b4 2)*S4+b.4'2]
1

s & 58
+ X (1 =8 —b,2)+ S, *b(ﬂ}[ﬁ - ’:|
Fy Py T

SB

+;:(RB—SB){‘UP{/YB(I “S;s_bb' 2)_S’t;+b.9/2]
B
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s $F

+2(1 -85 —bs/2)(R, —SA)L,—" - r—'](pAs;‘ +rASf)} =0 @7

where

RS —(S*+S82))2

§" = R—S

s, =sin2pg s, = sinh2rg

¢, =cos2pq c, = cosh2rq. (28)

4, GROWTH OF PERTURBATIONS. APPLICATION TO THE EXTRUSION PROCESS

Equation (27) relates the strain (g), the wavenumber (g) and the stability parameter
(&). Therefore, for a given strain ¢, the set of eigenvalues, £, can be determined in terms of
q.

When the minimum of these eigenvalues, ,, satisfies the condition £2 < 0, instability
will occur and the displacement i = ¢~ (see (7)) will become an unbounded solution of
the problem. Let 4, be the initial amplitude of the perturbation. The evolution with time of
the relative amplitude of the perturbation is then given by

u i,

—a= elénlt —a (29)
If this amplitude is limited by an allowable maximum, so that
a <M i,
b—a b—a’
then
&) <2 (30)

which provides a useful expression to control the maximum growth of the perturbation.

As an application of the above analysis, consider now the extrusion process of a
bilayered sheet through a wedge-shaped die. Equation (27) can be used as a first approxi-
mation. It is assumed that the interface perturbation is initiated when the sheet contacts
the entry section of the die. The growth of the perturbation is analysed according to actual
values of the process.
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Table 1. Constants in the constitutive models

Model Constants

Voce C=%Y.m=1 n=12
Hollomon k=Y n=0.04
Prager =YV n=73

As shown later. instability i1s promoted as the maximum strain attained in the interface
increases. In an extrusion process. this maximum occurs at the exit section of the die (see
Alcaraz and Gil-Sevillano, 1993). Therefore. the perturbation amplitude under unstable
conditions exhibits a maximum when the sheet leaves the die. Beyond this zone. as the
material does not yield any longer. the perturbation will not increase any more.

The time required for the material to go through the die can be estimated from the
following approximate expression :

S
p= " (31)

g
A

where ¢,,,, represents the maximum strain of an interface element and & is the strain rate of
the process. Then (30), turns into:

in M
i (32)

EA-TITN BN

.
Cman

Considering & maximum strain of 1.0, a strain rate of 100 and a growth up to 20 times
the initial small perturbation (i.e.. M = 20). an allowabie limit of 300 is obtained. This
value can be used as a reference.

5. RESULTS

In this section. results are presented for materials with a constitutive equation in the

form @ = #(Z). where & and ¥ are the equivalent stress and strain. respectively. Three
constitutive models have been considered in the calculations:

(iy Voce model: & = C(l —me ") (33)
(ii) Hollomon model: & = k& (34)
(iii) Prager model: & = Ctanh (nf) (35)

where C. k. m. n are constants. Details of the choice of values for these constants are given
in Alcaraz et al. (1997). The relevant information is summarized in Tables 1 and 2.

Table 2. Parameters in the govermng equation (27) for the constitutive models

KT KNG
Voce R:5f< —1 )co[h 38) S=Y%>("-—]
20 \om , "\ 2n \m )
. 3 a, o Cymgn
ga=C({--me ™) S =] U= ,,B Be
= Chme ™ Cmgn,
Holl R0 ot 3 gt
ollomon = " coth( 37 S=-"-
2o N 2 n
RIS #
5= k" S=_ " C=dk R
- kni iy
NERL - - o311 o
Prager R = 5 z—smh(Zm:icolh (\ 3 5= 5 5smh (2n8)
. . 3o, , . Cgng cosh® (11,8
7 = Ctanh (#%) S" = —cosh” (ne) I=2F B
2Cn Cuiny cosh® (n,8)
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Fig. 2. Influence of the constitutive model on the stability parameter Z: (a) Ar= VY, }, =2,
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Table 1 shows the selected values of the parameters in the constitutive laws, and Table 2
gives the expressions for R. .S, S" and { corresponding to each constitutive equation,

S.1.
shows the results for the three constitutive models. in two typical cases: (a) a bilayer with

an upper location of the harder material. a yield stress ratio k, = Y,/ Y, = 2 and a thickness

1. Influence of the constitutive models
Firstly. the effect of the selected constitutive model on instability is assessed. Figure 2
ratio r. = (¢—h).(b—a) = 1.3 (in Fig. 2a), and (b) a bilayer with a lower location of the

= 3 (in Fig. 2b). The harder material could be

harder material with ratios A, = 1,2 and r,
a corrosion resistant allov and the other a low-alloyed structural steel. In all the cases, a
maximum strain of 1.0 1s assumed.
It can be seen that the values of the stability parameter, ¢. using the Prager equation
are higher than those obtained with the Voce model. and the latter, in turn, higher than
those corresponding to the Hollomon model. Therefore. the Hollomon equation leads to a
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Table 3. Reference values for both locations of the harder material

Location of the

harder material k, r ", ", I Pl d, d, o
Upper 2 13 12 12 1 1 1 1
Lower 0.5 3 12 12 1 1 1 1

more stable behaviour. However. the Voce or Prager equations are more representative of
an actual high-temperature plastic behaviour. by which a saturation stress is often reached
after only moderate strains.

Comparing now the results of Fig. 2a and Fig. 2b, it is clearly seen that for a lower
location of the harder material (Fig. 2b). a higher stability parameter is obtained. By
assuming the reference value of 300, it 1s concluded that this limit is exceeded in both cases
by using the Prager model. especially when the harder material is placed lower.

5.2 Influence of the geometric and material parameters of the problem

A number of calculations have been carried out in order to ascertain the influence of
several geometric and material variables on the stability parameter. The computations have
been performed using the Voce model. In particular, the following variables are considered :

the vield stress ratio. k&, = Y, Y, (for both locations of the harder layer).
--the thickness ratio, r, = (¢ —5h) (b —a) (also for both locations),
-—-the hardening parameters #, and #,.

the hvdrostatic stress parameter, p, = o, ¥, where ¢, is the hydrostatic stress,
—the density ratio d, d,.

the maximum strain.

The reference values of the parameters for both locations of the harder materials are
given in Table 3.

Figure 3 shows the effect of the yield stress ratio. k,, for both locations of the harder
material. Note that these graphs start at the wavenumber corresponding to the onset of the
elliptic regime. since we focus on the undulatory mode at the interface. This criterion will
be followed in the subsequent results of this section. In Fig. 3. it can be seen that the
maximun stability parameter increases as the discrepancy between the yield stresses of the
two materials increases. Values are again higher in the case of setting lower the harder
material (Fig. 3b). In this latter case. the limit of 300 is only reached for a wavenumber of
4.5if k, < 0.5. and for a wavenumber of 6 if k, < 0.33.

Therefore. putting together the results of Alcaraz er «f. (1997) and the present results,
it can be drawn that the discrepancy in the yield stress not only promotes the onset of
instabilities but also the subsequent growth of the undulations originated at the interface.

Figure 4 illustrates the influence of the thickness ratio. r.. No trend can be appreciated
in this case. Nevertheless. Fig. 4a. for an upper location of the harder layer. seems to
indicate a slight increase in the maximum stability parameter with the increase in the
thickness of the harder laver. The stability parameter is higher in Fig. 4b. corresponding to
the lower location of the harder material. In this last case. the reference value of 300 is
attained at certain wavenumbers.

Figure 5 shows the effect of some other parameters. for the case of & lower harder
material. which proves to be the most dangerous. The effect of the hydrostatic stress in
material 4 1s shown in Fig. 5a. The results indicate a slight increasing trend on increasing
the hydrostatic stress. It is also found that the wavenumber of 4.5 appears to provide the
worst conditions for stability.

Figures 5b and ¢ illustrate the influence on stability of the hardening parameters #,
and n,. respectively. 1t can be seen that ; considerably increases as either of the hardening
parameters increases. A hardening coetlicient n, higher than 12 provides stability parameters
exceeding the reference limit of 300 at high wavenumbers.
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Fig. 3. Influence of the yvield stress ratio. A.. on the stability parameter 7 : (a) upper harder material.
(b) lower harder material.

Consequently. as occurred with the yield stress ratio, a similar trend in the hardening
and hydrostatic pressure parameters has been found between the present analysis and the
bifurcation analysis.

The density ratio also has repercussions on the bifurcation equation. due to the
dynamic nature of the stability phenomenon. From Fig. 3d, it appears that the growth of
the perturbation very slightly increases as it does the lower/upper density ratio.

The effect on ¢ on the maximum strain attained at the interface. shown in Fig. Se.
becomes more relevant. An increase in the strain provides a very marked increase in &
values. In the extrusion process. for instance. this situation would be produced by an
increase in the die angle or in the extrusion ratio. Consequently, as indicated by the high
values attained in Fig. Se. instability problems may be encountered at high strains for
perturbations developed along the bimaterial interface.
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6. CONCLUSIONS

The analysis carried out in this paper completes the bifurcation analysis of bimetallic
layers between rigid surfaces under biaxial plastic loading, presented in Alcaraz er al. (1997).
A stability parameter is established to determine the growth of an initial perturbation
originated at the interface. in terms of the strain rate. the total plastic strain and the other
geometric and material parameters of the process. Detailed results are presented about the
effect of a number of variables related to the problem. such as the vield stress ratio, the
thickness ratio, the hardening parameters, the maximum strain attained and the hydrostatic
stress.

In summary. it can be concluded that instability is originated and promoted as the
yield stress ratio between the harder and softer material increases. The same. yet stronger,
tendency 1s found on increasing the maximum strain attained at the interface or the
hardening parameters of the constitutive laws. The density ratio between the two materials
and the hydrostatic stress levels affects weakly the stability of the process: an increase in
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Fig. 5. (Continued).

the Jower/upper density ratio. or in the hydrostatic stress level, promotes the growth of
instabilities.

It is also shown that instability is generally favoured with a lower location of the
harder material. The values of the stability parameters are almost doubled compared with
the opposite case.

Finally. the influence of the selected constitutive model is illustrated. Among the three

models considered (Voce, Prager and Hollomon), the Prager model appears to provide the
worst conditions for stability.
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